The recognition of glycolate oxidase apoprotein with flavin analogs in higher plants.
نویسندگان
چکیده
The dependence of glycolate oxidase apoprotein (apoGO) activity on flavin analogs was surveyed in 9 higher plants from 7 families. Activities of all apoGOs depended not only on flavin mononucleotide (FMN) but also on flavin adenine dinucleotide (FAD), but not on riboflavin. The kinetic analysis showed that FMN was the optimum cofactor for apoGO from leaves of Brassica campestris. In plant kingdom, FMN, FAD and riboflavin are three flavin analogs with very similar structure, and they could coexist and be inter-converted from each other, so the question is how the apoprotein of glycolate oxidase (GO) recognized these flavin analogs. No inhibition effect of riboflavin on the activity of apoGO with FMN or FAD was found and no obvious quenching of riboflavin or apoGO protein fluorescence was detected with the addition of apoGO or riboflavin, respectively. These results indicated that riboflavin did not bind to apoGO tightly like FMN and FAD. Inorganic phosphate (Pi) did inhibit the activity of GO, and kinetic analysis revealed that this inhibition was caused by the competitive binding to apoGO between Pi and FMN. This competitive binding was further confirmed by the inhibition of Pi to the quenching of FMN and apoGO protein fluorescence with apoGO and FMN, respectively. It was suggested that the 5'-phosphate group of FMN or FAD may play a key role in the recognition and binding of riboflavin analog cofactors with apoGO.
منابع مشابه
Role of tyrosine 129 in the active site of spinach glycolate oxidase.
The enzymatic properties and the three-dimensional structure of spinach glycolate oxidase which has the active-site Tyr129 replaced by Phe (Y129F glycolate oxidase) has been studied. The structure of the mutant is unperturbed which facilitates interpretation of the biochemical data. Y129F glycolate oxidase has an absorbance spectrum with maxima at 364 and 450 nm (epsilon max = 11400 M-1 cm-1). ...
متن کاملNucleophilic addition reactions of free and enzyme-bound deazaflavin.
DeazaFMN-containing glycolate oxidase has been prepared and shown to catalyze the stereospecific transfer of the alpha-hydrogen from substrate to enzyme-bound deazaFMN. The reaction of sulfite, cyanide, and hydroxylamine with several deazaflavin-containing enzymes (glycolate oxidase, D-amino acid oxidase, glucose oxidase, N-methylglutamate synthetase) and free deazaFMN has been examined. All th...
متن کاملYellow Mutant of Chlorella vulgaris
An antiserum to tobacco glycolate oxidase has been prepared by injection of the purified enzyme into rabbits. Double gel diffusion tests between the antiserum and purified antigen and also with a crude tobacco preparation gave a single immunoprecipitation band. Crude extracts of Euglena gracilis Z Klebs, containing glycolate dehydrogenase, and of Chlorella vulgaris 211-llh/20, containing glycol...
متن کاملPhotoinactivation and protection of glycolate oxidase in vitro and in leaves.
Glycolate oxidase that was partially purified from pea leaves was inactivated in vitro by blue light in the presence of FMN. Inactivation was greatly retarded in the absence of O2. Under aerobic conditions H2O2 was formed. The presence of catalase, GSH or dithiothreitol protected glycolate oxidase against photoinactivation. Less efficient protection was provided by ascorbate, histidine, tryptop...
متن کاملGlycolate oxidase content of microbodies as affected by nitrate.
Glycolate oxidase is loosely held by microbodies obtained from etiolated barley (Hordeum vulgare L.) leaves depleted of nitrate. Defined centrifugation conditions cause the complete detachment of the enzyme from the microbodies. Addition of nitrate to these plants brings about a greater retention of glycolate oxidase by the microbodies. Synthesis of a nitrate-induced protein seems to be respons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biochimica et biophysica Sinica
دوره 36 4 شماره
صفحات -
تاریخ انتشار 2004